Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL9TheRicardosplitcycleliquidnitrogenengineWhereastheDearmanengineusesliquidairornitrogenasfueltheautoengineeringconsultancyRicardoisdevelopinganovelICEthatwouldrunprimarilyonpetrolordieselbutincorporateaquantityofcryogenicgasintothecycletomakeitsignicantlymoreefcient.IntheRicardosplitcycledesigncompressionandcombustiontakeplaceinseparatecylinders.EfciencyisraisedbycombiningthehighcompressionratiosofanICEwiththeheatrecoveryofagasturbine.ReconcilingtheseotherwiseincompatiblefeaturesrequirestheintakeairbeactivelycooledsothatcompressionisisothermalmeaningtheairstaysataroughlyconstanttemperaturewhichtheRicardodesignachievesbyinjectingliquidnitrogen.ThisreducestheworkrequiredforcompressionandmeansexhaustheatcanberecoveredthroughaheatexchangertoexpandthecompressedairasitentersthecombustorforafullerdescriptionpleaseseetheCLCFreportcitedonpage25.ModellingconductedundertheTSBCoolRprogrammehassuggestedtheRicardosplitcycleenginewouldbe60efcientcomparedtoaround40formoderndiesels.TheTSBhasnowawardedRicardoagranttodeveloptheenginehardware.Ricardobelievestheenginewillinitiallybedeployedonheavydutyvehiclesrailmarinelorriesandoff-roadapplicationswhicharebigenoughtoaccommodateanextratankforliquidnitrogenandwherethedieselsavingswouldbesufcienttooffsetsomeadditionalinfrastructurecost.Astandardheavydutyvehiclewithadieseltankof240litreswouldbeabletoreducethisto170litreswiththesplitcycleenginebutwouldalsorequireanitrogentankof1.1m3roughlythesamesizeaswouldbeneededtoconvertthevehicletocompressednaturalgasCNG.Inthisexampledieselconsumptionwouldfallbyalmost30anddependingoncostassumptionsforfuelandnitrogennancialsavingscouldbeasmuchas20.TheAutomotiveCouncilroadmapshowstheRicardosplitcycleenginetobeinvolumeproductionby2020.TheRicardosplitcycleenginewouldbe60efcientcomparedtoaround40formoderndiesels.3.LIQUIDAIRTECHNOLOGIESGRIDLiquidaircanalsobeusedtoprovidebothbulkelectricitystorageandback-upgenerationandtheseapplicationsarealreadywellontheirwaytocommercialisation.AtitspilotplantinSloughpicturedpage11HighviewPowerStoragehassuccessfullydemonstratedtwomodelstheLiquidAirEnergyStorageLAESsysteminwhichairisliqueedstoredandusedtogenerateelectricityonasinglesiteandtheCryogensetageneration-onlydevicesuppliedwithliquidairornitrogenbyroadtankerfromanindustrialgasproductionfacility.Whileeachwouldperformadifferentrolebothcanexploitwasteheatandprovidecoolingandcouldthereforeintegratewithawiderangeofgridindustrialandcommercialequipmenttoincreasetheirenergyreturn.LAEScouldalsoexploitwastecoldfromLNGre-gasicationforexampleduringliquefaction.Energystorageandback-upgenerationareexpectedtobecomeincreasinglyimportantasBritaininstallsevermoreintermittentrenewablegenerationcapacityoverthecomingdecades.TheDearmanEngineCompanyisdevelopingasmallerscalegeneratorbasedonitsliquidairpistonengine.LiquidAirEnergyStorageLAESLAESisanovellarge-scalelongdurationenergystoragesystembasedonstandardcomponentsfromtheindustrialgasesandpowergenerationindustries.Electricityisusedtodriveanairliquefactionplanttoproduceliquidairwhichisthenstoredinaninsulatedtank.Whenpowerisrequiredtheliquidispumpedtohighpressureandthenthroughaheatexchangerwhereitconvertsintoahighpressuregasthatdrivesaturbinetogenerateelectricity.Coldfromtheevaporationisrecycledtoreducetheenergyrequiredbytheliqueerandwasteheatfromtheliqueeroranexternalsourceincreasestheenergyrecoveredfromtheexpansionofliquidair.Atcommercialscale10-250MWLAESisexpectedtohavearoundtripefciencyof60.AfterextensivetestingatthepilotplantthesystemiscurrentlyatTRL7onascaleof1-10andsinceitisbasedonexistingcomponentsdevelopersHighviewPowerStorageexpectprogresstofullcommercialisationtoberelativelyrapid.