You will need the Flash plugin to view this publication

Download the Flash plugin for free . Just refresh this page after installing Flash.
Also make sure that javascript is enabled in your browser.

Alternatively, you can download this publication in PDF-format - Click here.

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
CENTREFORCRYOGENICENERGYSTORAGELiquidAirTechnologiesaguidetothepotentialGAME-CHANGINGTECHNOLOGIES ContentsPREFACE1SUMMARYANDRECOMMENDATIONS2OVERVIEW3LIQUIDAIRTECHNOLOGIES8Transport8Grid11THELIQUIDAIRECONOMY18CONCLUSIONSANDRECOMMENDATIONS20TECHNOLOGYTIMELINE22AUTOMOTIVECOUNCILTECHNOLOGYREADINESSLEVELS23GLOSSARY24REVIEWERSDrJonathanRadcliffeProgrammeDirectorCLCFEnergyStorageCentreandSeniorResearchFellowUniversityofBirminghamProfessorRichardAWilliamsOBEFREngFTSEUniversityofBirminghamEDITORDavidStrahanPUBLISHEDBYCentreforLowCarbonFuturesandLiquidAirEnergyNetworkCLCFTechnologyInsight1October2013ISBN978-0-9927328-0-6THECENTREFORLOWCARBONFUTURESPARTNERSHIPhttpwww.lowcarbonfutures.org LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL1PREFACE2013istheyearliquidairarrivedasaseriousenergytechnology.FollowingareportbytheCentreforLowCarbonFuturesandaconferencewiththeindustrialandbusinesscommunityattheRoyalAcademyofEngineeringliquidairtechnologiesarenowwidelyrecognisedasofferingthepotentialtodeliverreductionsinfuelbillsairpollutionandcarbonemissionswhilesimultaneouslyboostingenergysecurityandcreatingjobs.TheGovernmentisclearlyconvincedofthepotentialandhassofarthisyearcommittedsignificantmillionstofundimmediatedemonstrationprojectsingridandtransportapplicationsandanewmulti-millionpoundresearchinstitutetheBirminghamCentreforCryogenicEnergyStorage.Thedebatehasbroadenedrapidlytoencompassnotsimplythebenefitsofindividualtechnologiesbutalsothepotentialforajoined-upliquidaireconomy.Likeanypotentiallydisruptivetechnologythebenefitsofliquidairwouldneedtobesignificantforittoachievewidespreadadoptioninbusinessandsocietyatlarge.ButwhatwouldthatmeanAliquidaireconomywouldconvertwrongtimerenewableenergyintoaformthatcanbeusedequallywellinawiderangeofapplicationsfromelectricitystorageandgenerationtovehiclesincludingbusesandlorries.Itwouldhelptacklethreeofthetoughestchallengesofthelow-carbontransitionbalancinganelectricitygridincreasinglydominatedbyintermittentrenewableseconomicallyreducingtransportemissionsandharvestinglowgradewasteheatthroughouttheeconomy.BasedonanoldideatheliquidaireconomyisbeingmadepossiblebytheworkofUKentrepreneursengineersandacademicsandplaystoBritishstrengthsincryogenicandmechanicalengineering.InMaytheCentreforLowCarbonFuturespublishedareportLiquidAirintheenergyandtransportsystemsopportunitiesforindustryandinnovationintheUKwhichestimatedthevaluetoBritainfromliquidairenergystoragealoneat1billionand22000jobs.ThosejobscouldwellfavourtheMidlandstheNorthofEnglandandScotland.Twopeoplehavebeeninstrumentalinlayingthefoundationsforthisopportunity.OneisanarchetypalBritishinventorPeterDearmanwhomadethebigleapforwardinengineefficiencyandconvertedacarinhisgaragetoprovehisidea.TheotherisProfessorYulongDingwhoworkingwithPeterledtheearlyworktoinventLiquidAirEnergyStorageforgrid-scaleapplicationandistodaythenewChamberlainChairatthestateoftheartBirminghamCentreforCryogenicEnergyStoragewherehewillleadthenextphaseofresearchanddevelopmentofliquidairtechnologies.Theliquidaireconomyisnosilverbulletbutitdoesofferauniquecombinationofenergyenvironmentalandeconomicbenefits.Whatsmoresinceliquidairisbasedonexistingcomponentsandsupplychainsaliquidaireconomycoulddevelopfarsoonerthansomeotherapproaches.Whatweneednowisaroadmaptotakeusfromheretothereandthisbriefingpaperisthefirststeprecognisinganysuchmapmustidentifyhumanbusinessandtechnologicalscenarios.ProfessorRichardAWilliamsOBEFREngFTSEUniversityofBirmingham 2LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALWorkingwiththeCentreforLowCarbonFuturestheLiquidAirEnergyNetworkwasestablishedtoanswerthatquestion.Weshallpublishaseriesofreportstoexploreinmoredetailthepotentialroutestomarketbarrierstoentryandtheresearchanddevelopmentrequired.Inthisrstbriengnotewesummarisetheenvironmentalandeconomicpotentialofeachofthevariousliquidairtechnologiescurrentlyavailableorbeingdevelopedandthenexplorehowthesecouldintegrateintothewiderenergysystemtoformaliquidaireconomy.Wepresentanindicativetimelineshowingtheprogressofliquidairagainstpolicytargetsandreachsomebroadconclusionsabouthowtomaximisethechancesthatliquidairdeliversitspotential.Werecommendthatliquidairstakeholdersshouldcollaboratetondevelopandmaintaintechnologyandproductroadmapsforbothgridandtransportapplications.TheseroadmapsproducedbyconsensusshouldbealignedwithbroadergovernmentandindustryroadmapsandaimedtomaximisetheeconomicandenvironmentalopportunityforUKplcnexploretheglobalopportunitiesforliquidairacrossindustryandtransportinbothdevelopedanddevelopingeconomiesandquantifythemarketpotentialforUKplcnmappotentialsourcesofliquidnitrogensupplyanddemandtodeterminewherebesttocarryouteldtrialsandearlydeploymentndevelopmodelstoexplorethepotentialbenetsofintegratinggridandtransportapplicationsthroughmulti-purposeliquidairplantsnworkwithgovernmenttomakesureliquidairisrecognisedevenbetterinthepolicyandfundingframeworknstarttoinformthepublicofthebenetsandsafetyofliquidairtechnologies.ToachievethisLAENhasestablishedthreeworkinggroupscoveringgridenergystoragetransportandintegratedmodellingwithmembersdrawnfromindustryuniversitiestechnologydevelopersandexpertconsultancies.ThegridandtransportgroupswilleachdevelopandmaintainatechnologyroadmapandcommonresearchagendatoguideacademicandindustrialresearchsettargetsidentifyareasofUKstrengthandweaknessandmaximisethebenettoUKplc.TheLiquidAirTransportTechnologyGrouphasalreadystartedworktoidentifytheresearchneedsofliquidairtransportapplicationsacrosspassengercommercialandoff-roadvehicles.TherstiterationofthetransportroadmapwillbepublishedaspartofournextreportLiquidAirontheHighwaywhichisjointlyfundedbytheTSB.Thegridandintegratedmodellinggroupswillbeginworkshortlyandtheirconclusionswillbereectedinfurtherreportsoverthecomingyear.Liquidairarrivedin2013asaseriousenergytechnologycapableofdeliveringmajoreconomicandenvironmentalbenets.1.SUMMARYANDRECOMMENDATIONSGovernmentuniversitiesandinvestorshaveclearlyrecognisedthepotentialofliquidairbutitsfuturesuccessisfarfromguaranteed.Likeallnoveltechnologiesliquidairmustcrossthevalleyofdeathbetweendemonstrationandcommercialisationwheremostfail.Ontheothersideofthevalleyliesthepossibilityofajoined-upliquidaireconomywhereliquidairiswidelydeployedtodelivermajorreductionsinfuelconsumptioncostcarbonemissionsandlocalairpollutionaswellaseconomicgrowthandnewjobs.Thequestionnowishowtogetfromheretothere. LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL32013wastheyearliquidairarrivedasapotentiallysignicantenergytechnology.TheideadevelopedinBritainofusingcryogenicairornitrogenasanenergystoragemediumhasbeengainingmomentumfornearlyadecadebutthisyearliquidairhasforthersttimegainedwidespreadrecognitionntheAutomotiveCouncilhasincorporatedliquidairintoitstechnologyroadmapsntheCentreforLowCarbonFuturesCLCFpublishedanin-depthreportintoitspotentiallaunchedataconferenceattheRoyalAcademyofEngineeringntheUniversityofBirminghamopenedadedicatedresearchfacilitytheCentreforCryogenicEnergyStorageBCCESwithfundingfromtheEngineeringandPhysicalSciencesResearchCouncilEPSRCntheLiquidAirEnergyNetworkwasfoundedtoensuretheUKcapturesthefullenergyenvironmentalandeconomicbenetsnorganisationsdevelopingliquidairtechnologieshavesofarwonsignicantmillionsingovernmentfundingfortechnologydevelopmentmarketstudiesanddemonstrations.Thesedevelopmentsprovidecompellingevidenceofhowseriouslyliquidairisnowbeingtakenasapotentiallypowerfullow-carbonenergyvector.Thereasonliquidairismakingsuchanimpactisthatmanyexpertsnowagreeitcouldhelpsolvesomeourtoughestenergychallenges.AlthoughtheconceptitselfisdeceptivelysimpleseeBox1onpage4liquidairhasmanypotentialapplicationsbalancinganelectricitygridincreasinglydominatedbyintermittentrenewablegenerationprovidingacheapandconvenientlow-carbontransportfuelandharvestingwasteheatthroughouttheeconomy.TheCLCFreportbasedoncontributionsfromabroadgroupofindustrialandacademicexpertsfoundliquidaircouldforexamplenprovideacost-effectivemeansofstoringgridelectricityinbulktohelpbalanceintermittentrenewablegenerationandreducegridemissionscreatinganindustryworthatleast1bnperyearand22000jobsnreducedieselconsumptionandcarbonemissionsinbusesandfreightvehiclesby25usingliquidairdieselhybridenginesncutcarbonemissionsfromrefrigerationonfoodlorriesbyatleast23basedoncurrentgridaverageelectricitywithpotentialforover90infutureandeliminatelocalairpollutionfromthissourcenstrengthenUKenergysecurityasinglegasometer-styletankofliquidaircouldmakegoodthelossof5GWofwindpowerforthreehoursequivalenttoalmost10oftheUKspeakelectricityneeds.Liquidairalsohastwoimportantindustrialadvantages.Firstliquidairtechnologiescanbeproducedlargelyfromexistingcomponentsandsupplychainsmeaningtheyshouldbequickertomarketthanothernoveltechnologiesatanominallysimilarstageofdevelopment.ForexampleHighviewPowerStoragedemonstratedthestorageofgridelectricityusingliquidairin2011andtheDearmanEngineCompanywillstarttotestitsnovelliquidairpistonengineonavehiclein2014.Secondtherealreadyexistsafuelproductionanddistributionnetworkthroughoutthedevelopedworld.FortechnicalreasonsseeBox1theindustrialgascompanieshavesubstantialquantitiesofspareliquidandgaseousnitrogenproductioncapacitywhichcouldbeusedinplaceofliquidairtosupportearlydeployment.InBritainthesurplusnitrogengasventedeverydaycouldbeenoughtopower310000homesorfuelwellover40000busesequivalenttotheentireUKbuseetalthoughthiswouldrequireinvestmentinadditionalliqueers.1ThespareliquidnitrogenproductioncapacityisalsosignicantandavailableimmediatelywithoutfurtherinvestmentanditspotentialwillbeassessedinourforthcomingreportLiquidAirontheHighway.Inanyeventrefuellinginfrastructureposesnochickenandeggdilemmaforliquidairamajoradvantageoverotherenergyvectors.Liquidaircouldhelpsolvesomeofourtoughestenergychallenges.2.OVERVIEW18500tonnesofliquidairperday200kgperbusperday42500buses 4LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALDespitethegrowingawarenessofitstechnicalandindustrialadvantageshoweverthereisnoguaranteethatliquidairwillactuallyprogresstomassdeployment.Likeallnoveltechnologiesitmustmakethetransitionbetweendemonstrationandcommercialisationwhenmostfail.Ontheothersideofthisvalleyofdeathliesthepossibilityofajoined-upliquidaireconomywhereliquidairiswidelydeployedtodelivermajorreductionsinfuelconsumptioncostcarbonemissionsandlocalairpollutionaswellaseconomicgrowthandnewjobs.Thequestionnowishowtogetfromheretothere.ThequestionisespeciallyacuteinBritainwhichhasalonghistoryoflettingbrilliantinventionssuchasadvancedbatterytechnologiesslipfromitsgrasptobeexploitedoverseas.LiquidairhasthepotentialtoopenaglobalmarketworthtensofbillionsofpoundssaidJohnHayesMPasMinisterofStatefortheDepartmentofEnergyClimateChangein2012.Butthatwillonlybetrueifwerstdevelopthetechnologyathome.Thisproblemisalreadybeingtackledinsomesectors.InthemotorindustryforexamplethegovernmentandtheAutomotiveCouncilhavejointlycommitted1billiontofundthenewAdvancedPropulsionCentreintendedtoensurethatBritishadvancesinvehicletechnologyaredevelopedtocommercialproductionathome.ItisencouragingthereforethattheAutomotiveCouncilhasrecognisedthepotentialofliquidairinitslatesttechnologyroadmap.Butthisdoesnotmeanstakeholderscanrelaxthereisagreatdealmoreworktobedonetoensureliquidairsurvivesthevalleyofdeath.Britainhasalonghistoryoflettingbrilliantinventionsslipfromitsgraspliquidaircanavoidthatfate.2.OVERVIEWAirturnstoliquidwhenrefrigeratedto-196Candcanbeconvenientlystoredininsulatedbutunpressurisedvessels.Exposuretoheatincludingambientcausesrapidre-gasicationanda700-foldexpansioninvolumewhichcanbeusedtodriveaturbineorpistonenginetodousefulwork.Themainpotentialapplicationsareinelectricitystorageandtransportandinbothliquidaircanprovidetheadditionalbenetofwasteheatrecoveryandorcooling.Sincetheboilingpointofliquidair-196Cisfarbelowambienttemperaturestheenvironmentcanprovidealltheheatneededtomakeliquidairboil.Howeverthelowboilingpointalsomeanstheexpansionprocesscanbeboostedbytheadditionoflowgradewasteheatupto150Cwhichothertechnologieswouldnddifculttoexploitandwhichsignicantlyimprovestheoverallefciency.LiquidaircanalsoexploitthewastecoldfromLNGre-gasicationtoimprovetheefciencyofliquefactionandreducecosts.Aswithbatteriesorhydrogenthepurposeofliquidairistostorewrongtimeloworzerocarbonelectricitywhichcanthenbeusedtodisplacehighcarboncoalorgasinelectricitygenerationandpetrolordieselinvehicles.Thecarbonintensityofliquidairdependsonthesourceofelectricityusedtomakeitandmostindustrialliqueersoperateatnightwhengreenhousegasemissionsofgridelectricityarelowerthanaverage.Newliqueerscouldbeintegratedwithrenewablestoproduceeffectivelyzerocarbonliquidair.Liquidairandnitrogenareinanycasezero-emissionfuelsattheirpointofuseofferingthesamepotentialfordramaticlocalairqualityimprovementaselectricityorhydrogen.Aliquidairengineislikelytobesignicantlyquieterthanawell-silencedpetrolordieselengineandwouldbemadeofcommonandeasilyrecyclablematerials.Liquidairisnotyetproducedcommerciallybutliquidnitrogenwhichmakesupfourfthsoftheatmosphereandcanbeusedinthesamewayasliquidairisproducedthroughouttheindustrialisedworld.Theindustrialgascompanieshavelargeamountsofsparenitrogenproductioncapacityforthesimplereasonthereisfarmorenitrogenthanoxygenintheatmospherebutproportionatelylesscommercialdemand.Thissurpluscouldbeusedinplaceofliquidairtosupportearlydeploymentseemaintext.Infutureliquidairwouldbecheapertoproducethanliquidnitrogenbecausethereisnoneedtoseparatethenitrogenandoxygenmeaningliquefactionrequireslessequipmentandaroundafthlessenergy.BOX1Whatisliquidair LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL5Britaincouldstarttobuildaliquidaireconomybasedonspareindustrialgasproductioncapacity.2.OVERVIEWLiquidairtechnologiescouldbedevelopedpiecemealbuttheenvironmentalandeconomicbenetswouldbefargreateriftheywereintegratedwitheachotherandwiththeexistingenergyinfrastructuretostoreandmakeuseofwrongtimeenergy.Whenthediverserolesofliquidairelectricitystoragegenerationtransportfuelandcoolingareallsuppliedfromasingletankofcryogenicuidwecouldbegintotalkofajoined-upliquidaireconomy.ApromisingplacetostartwouldbetheelevenindustrialgasproductionsitesacrossGreatBritainwhichhavesubstantialsurplusproductioncapacityforliquidnitrogenwhichperformsmuchthesameasliquidairandanationwidetankerdistributionnetwork.Thesecouldsupplyliquidnitrogentostoragetanksinlocationssuchasindustrialparksbusandhaulagedepotsandtowncentresupanddownthecountry.Oncethesurplusliquidnitrogencapacityhasbeenputtogoodusenewairliqueersharnessingwrong-timerenewableenergycouldbebuiltinstrategiclocationstoexpandsupply.Anewstoragetankorliqueersitedatanindustrialparkforexamplemightsupplyarangeofneighbouringbusinessesfordifferentpurposes.Adatacentremightneedliquidairforcoolingandforacryogenicback-uppowergeneratorwhilealogisticscompanymightwantfuelfordieselliquidairhybridlorriesandzero-emissionforklifttrucks.Theliqueercouldbeintegratedwithacryogenicgeneratorandanearbybiomasspowerstationtocreateanefcientenergystorageplantabsorbinglowcarbonelectricityovernightanddeliveringitbacktothegridatpeaktimeswhileconvertingthewasteheatfromthebiomassplantintoextrapower.Asupermarketdistributionhubontheotherhandmightinstallalargeliquidairtanktoberegularlyrelledfromthenearestliqueerwhichcouldsupportitslorryrefrigerationunitsforklifttrucksandaback-upgeneratorforemergencypower.Ametropolitanbusdepotcouldadoptasimilarapproachwithalargetanktosupportbothitsbuseetandageneratorforgridbalancing.Thepotentialofliquidairisonlybeginningtobecomeapparentanditseemslikelythatfurtheropportunitieswillemergeasourunderstandingimproves.Forafullerexplorationoftheliquidaireconomypleaseturntosection4.BOX2TheliquidaireconomyAutomotivetechnologiestheUKscurrentcapabilityEnergyRecoveryStorageTechnologiesElectricalMechanicalKineticThermalElectroChemistryElectrostaticCompGasCryogenicFluidsHighTempCategoryTechnologyExampleLithium-ionChemistriesNickelMetalHydrideVRLeadAcidDerivativesNextGenAirLiNaZnAlHydraulicAccumulatorAirExpansionEngineLiquidAirExpansionEngineLN2ExpansionEngineSodiumChemistriesLiquidAluminiumRankineMoltenSaltsRankineCycleHiSpeedFlywheelCarbonFibreMechDriveCarbonFibreElecDriveSuperUltracapacitorsLowTempLowTempWaxesandSaltsVehicleenergyandstoragetechnologies.SourceAutomotiveCouncil. 6LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALLiquidaircarswererstproducedaslongagoastheearly1900sbutinthosedaysthetechnologywascumbersomeandinefcientandsooneclipsedbytheinternalcombustionengineICE.ThebreakthroughcameintheearlyyearsofthiscenturywhentheBritishinventorPeterDearmanpicturedpatentedanovelandfarmoreefcientapproachwiththeDearmanengine.TheconceptwasfurtherdevelopedincollaborationwithscientistsattheUniversityofLeedsanditsoonbecamecleartheliquidaircyclecouldalsobeappliedtothebulkstorageofgridelectricityandmanyotherapplications.LiquidAirEnergyStoragewasdemonstratedonthegridin2011andtheDearmanenginewillstarton-vehicletestingin2014.TRANSPORTTheDearmanEngineTheDearmanengineDEisanovelpistonenginepoweredbythevaporisationandexpansionofliquidairornitrogen.ThenoveltyliesintheuseofaheatexchangeuidHEFthatpromotesextremelyrapidratesofheattransferinsidetheengineallowingtheDEtodispensewiththebulkyandinefcientexternalheatexchangerthathandicappedearliercryogenicenginedesigns.FirstwarmorevenambienttemperatureHEFisinjectedintothecylinderfollowedbyliquidairornitrogen.Thenastheuidsmixdirectheattransfercausesthecryogentoboilandexpandsopushingthepistondown.TheHEFcontinuestoprovideheatthroughoutthepowerstrokeleadingtoefcientisothermalexpansion.AfterwardsthecoolgaseousairexhaustsharmlesslytotheatmospherewhiletheHEFisre-heatedandre-used.TheDearmanenginecouldbeusedinanumberofcongurationsonitsownastheprimemoverorprincipalengineofazeroemissionsvehicleZEVcombinedwithaninternalcombustionengineICEtoformaheathybridorasapower-and-refrigerationunit.PeterDearmanhasalreadydemonstratedhisengineinamodiedcarandtheDearmanEngineCompanyDECisbuildingaprototypetobeginon-vehicleeldtrialsin2014withTechnologyStrategyBoardgrantfunding.TheDEsTechnologyReadinessLevelTRLonascaleof1to10iscurrentlyratedat4.Howeversincetheengineismadelargelyfromexistingpistonenginecomponentsitsdevelopmentisexpectedtobeshorterthanthatofothernovelenginedesigns.DECexpectsitsrefrigerationunittogointoeettrialsTRL7bytheendof2015.2PeterDearmaninventor.SourceDearmanEngineCompany.DearmanEngineZEVUsedonitsowntheDearmanengineisazeroemissionsenginewhoseexhaustconsistsonlyofcleancoldairornitrogen.Itisalsocapableoflowcarbonemissionsdependingonthecarbonintensityoftheelectricityusedtoproducethecryogen.Onthebasisoftheprojectedemissionsofovernight3electricityin2030theDEwouldhavelowerlifecyclecarbonemissionsthanbothelectricEVandfuel-cellFCVvehicles.LiquidairornitrogenhasasimilarenergydensitytothatofanEVbatterybutisfarquickertorefueltakingminutesnothours.SoasaZEVtheDearmanenginelendsitselftovehiclesthatareshorterrangehavealowerpowerrequirementoroperateonasinglesite.ModellingbyE4techsuggestspotentialmarketsincludefork-lifttrucksminingairportsinlandwaterways3-wheeltaxisortuktuksforemergingmarketsandinfuturecitycars.ThebreakthroughcamewhentheBritishinventorPeterDearmaninventedanovelandfarmoreefcientliquidairengine.3.LIQUIDAIRTECHNOLOGIES3Thecarbonintensityofovernightelectricitywillfallfasterthangridaveragebecauseofthedisproportionateimpactofgrowingwindcapacityduringperiodsoflowdemand.SeeCLCFLiquidAirintheenergyandtransportsystems20132TheTRLscitedinthisdocumentarethoseoftheAutomotiveCouncil.Fordenitionspleaseseepage23 LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL7DearmanEngineheathybridwasteheatrecoveryandcoolingBecausetheDearmanengineispoweredbythevaporisationofacryogenicliquiditsworkoutputcanberaisedbytheadditionoflowgradewasteheatfromanothersource-suchasaninternalcombustionengineICE.AnICElosesroughlytwothirdsoftheenergycontainedinitsfuelaswasteheataboutonethirdeachthroughtheradiatorandexhaust.Theheatlostthroughtheradiatorislowgrade100Cwhichconventionaltechnologiesnddifculttoharvest.HoweversincetheDEbottomtemperatureis-196Cevenlowgradewasteheatcanbeconvertedintoshaftpoweratpracticalconversionefcienciesofupto50.ThecoolingloopofadieselenginecontainsamixtureofwaterandglycoljustliketheheatexchangeuidinaDearmanengine.ThismeanstheICEwasteheatcouldbetransferredeitherdirectlycombiningradiatoruidandHEFinasinglecircuitorindirectlyviatwoseparatecircuitsconnectedbyaheatexchanger.ThereisnothingtostopanICE-DEheathybridincorporatingothertechnologiestoharvesthighergradewasteheatfromtheICEexhaust.AheathybridwouldconvertwasteheatfromtheICEintoextrashaftpowerthroughtheDearmanengine.ThiscouldbeusedtosupplytemporarypeaksinpowerloadsuchaspullingawayaccelerationorgoinguphillandwouldallowtheICEtobedownsizedandrunmoreefciently.TheDEalsohastheadvantageofdisplacingamaterialportionoftransportrelatedemissionsintoanenergyvectorliquidairornitrogenthatcanbeproducedfromlow-orzero-carbonsources.ThesecharacteristicsmeantheICE-DEheathybridlendsitselftouseinbusescoachesrubbishTheDearmanenginecanbecombinedwithaconventionalenginetomakeahighlyefcientheathybrid.3.LIQUIDAIRTECHNOLOGIEStruckslorriesurbandeliveryvehiclesandarangeofmorespecialistheavydutyandoff-roadequipment.AnICE-DEheathybridcouldconsumeupto25lessdieselsoreducingtheoverallfuelbillanddeliverprogressivelylargeremissionssavingsasthecarbonintensityofgridelectricityfalls.IfthevehiclealsoneedsairconditioningthecasefortheDEstrengthensfurtherparticularlyinhotterclimatessincetheengineextractsbothpowerandcoldfromthesameunitofliquidair.ThisisparticularlyinterestingforbuseswhereusingaDEtoprovideauxiliarypowerforcoolingandlightingthehotelloadwouldallowstop-starttechnologytobeintroducedmeaningtheICEisturnedoffcompletelywhenthevehicleisstationaryatbusstopsorintrafcwhichcancutdieselconsumptionbyanother10.TheDEwasteheatrecoveryconceptiscurrentlyatTRL3.HowevertheDearmanEngineCompanypredictsfullscaleprototypedemonstrationTRL6bytheendof2016.DearmanEngineRefrigerationPowerandCoolingTheDearmanenginecanalsooperateasazeroemissionandhighlyefcientTransportRefrigerationUnitTRUforvanslorriesandshippingcontainersreefersbecauseitextractsbothshaftpowerandcoldfromthesameunitofliquidairornitrogendeliveringimmediatesavingsinfuelcostsandcarbonemissions.Thesesavingswillbecomeincreasinglysignicantsincetheglobalrefrigeratedvehiclemarketisboomingdrivenlargelybychangingdietsinthedevelopingworldandexpectedtodoubleto6.8billionin2018.TheDearmancycle.SourceDearmanEngineCompany. 8LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALpower.Thiswouldproduceevengreaterwell-to-wheelsemissionssavingscomparedtodiesel.IfadieselTRUemits48tonnesofCO2peryeartheDEsystemwouldemitamaximumof37tonnesbasedonthecarbonintensityoftodaysUKgridelectricityandlessthan4tonnesin2030asavingofmorethan90.4Dearmanpowerandrefrigerationengine.SourceTheDearmanEngineCompany.ADearmanpowerandrefrigerationenginewoulddelivernancialaswellascarbonsavings.ModellingbyE4techshowsthataliquidaircombinedcoldandpowerunitdesignedtocoola40reeferto-20Cwouldpayforitselfinunderthreemonths.Dearmanexpectstherefrigerationunitwillbeineettrialsbytheendof2015.AuxiliaryPowerUnitAPUApowerandcoolingenginecouldalsobeputtogooduseinamobileAuxiliaryPowerUnit.APUsaretypicallyusedonlongdistancelorrieswherethedriversleepsinabunkinthecabrunningasmallauxiliarydieselunittosupplythehotelloadoflightingelectricalappliancesandairconditioningsavesagreatdealoffuelandcostcomparedtoidlingthevehiclesmainengineallnight.Howeverincreasinglystringentandwidespreadanti-idlingregulationiscreatingpressuretodevelopazero-emissionsalternativetothedieselAPU.WhereonlyelectricityisneededabatterypoweredAPUisthemostcompetitiveoptionbutwhereair-conditioningisalsorequiredtheliquidairpowerandcoolingAPUwouldbesignicantlycheapertobuyandrun.AtpresenttransportrefrigerationisoverwhelminglypoweredbydieseleitherthroughacompressordrivenbythevehiclesmainengineoraseparateTRU.Refrigerationalonecanconsumeasmuchas20ofalorrysfuelandcauseCO2emissionsofupto48tonnespervehicleperyear.DieselTRUsalsoemithighlevelsofnitrogenoxidesNOXandparticulatematterPMandarenoisywhichcanrestricttheirabilitytomakeurbanornight-timedeliveries.Anytechnologythatcanreducefuelcostsemissionsandnoisewillclearlypresentastrongbusinessenvironmentalandsocialcase.VehiclemanufacturersandindustrialgasproducershavebeguntooffervehiclerefrigerationbasedonliquidnitrogenevaporationsuchasnatureFridgesecoFridgesystemandaround1000unitsarenowinuse.Suchsystemsarezeroemissionatthepointofuseandquietersocapableofmakingnight-timedeliveries.Liquidnitrogeniseithersprayeddirectlyintothetrailerwhereitevaporatesanddisplaceswarmerairwithinertcryogenicgasoritispassedthroughaheatexchangerthatcoolstheairinthecompartmentindirectly.Thedirectapproachisabout30moreefcientthantheindirectbutrequiresadditionalsafetymeasurestopreventthedriverenteringthecompartmentuntilexcessnitrogenisvented.Neitherapproachhoweverextractsanypowerfromtheevaporationprocess.Directrefrigerationbyliquidnitrogen.SourcenatureFridge.TherefrigerationunitcurrentlybeingdevelopedbytheDearmanEngineCompanyisasignicantadvanceonexistingtechnologiessinceitusesliquidairornitrogentoproducebothcoolingandshaftpower.FirstthecryogenisvaporisedinaheatexchangerintherefrigerationcompartmentsocoolingitdownthenthehighpressuregasisusedtodrivetheDearmanenginewhoseshaftpowercanbeusedtodriveaconventionalrefrigerationcompressororforauxiliaryADearmanenginerefrigerationunitcouldproduceCO2savingsofmorethan90.3.LIQUIDAIRTECHNOLOGIES4EstimatesDearmanEngineCompanyandE4tech.UKgridcarbonintensity547gCO2kWhtoday50gCO2kWhprojectedin2030DearmanEngineHEFReclaimReheatGeneratorandHEFPumpThermalIntegrationthroughHEFCircuitLN2TankFridgeUnitLN2PumpHEFTank LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL9TheRicardosplitcycleliquidnitrogenengineWhereastheDearmanengineusesliquidairornitrogenasfueltheautoengineeringconsultancyRicardoisdevelopinganovelICEthatwouldrunprimarilyonpetrolordieselbutincorporateaquantityofcryogenicgasintothecycletomakeitsignicantlymoreefcient.IntheRicardosplitcycledesigncompressionandcombustiontakeplaceinseparatecylinders.EfciencyisraisedbycombiningthehighcompressionratiosofanICEwiththeheatrecoveryofagasturbine.ReconcilingtheseotherwiseincompatiblefeaturesrequirestheintakeairbeactivelycooledsothatcompressionisisothermalmeaningtheairstaysataroughlyconstanttemperaturewhichtheRicardodesignachievesbyinjectingliquidnitrogen.ThisreducestheworkrequiredforcompressionandmeansexhaustheatcanberecoveredthroughaheatexchangertoexpandthecompressedairasitentersthecombustorforafullerdescriptionpleaseseetheCLCFreportcitedonpage25.ModellingconductedundertheTSBCoolRprogrammehassuggestedtheRicardosplitcycleenginewouldbe60efcientcomparedtoaround40formoderndiesels.TheTSBhasnowawardedRicardoagranttodeveloptheenginehardware.Ricardobelievestheenginewillinitiallybedeployedonheavydutyvehiclesrailmarinelorriesandoff-roadapplicationswhicharebigenoughtoaccommodateanextratankforliquidnitrogenandwherethedieselsavingswouldbesufcienttooffsetsomeadditionalinfrastructurecost.Astandardheavydutyvehiclewithadieseltankof240litreswouldbeabletoreducethisto170litreswiththesplitcycleenginebutwouldalsorequireanitrogentankof1.1m3roughlythesamesizeaswouldbeneededtoconvertthevehicletocompressednaturalgasCNG.Inthisexampledieselconsumptionwouldfallbyalmost30anddependingoncostassumptionsforfuelandnitrogennancialsavingscouldbeasmuchas20.TheAutomotiveCouncilroadmapshowstheRicardosplitcycleenginetobeinvolumeproductionby2020.TheRicardosplitcycleenginewouldbe60efcientcomparedtoaround40formoderndiesels.3.LIQUIDAIRTECHNOLOGIESGRIDLiquidaircanalsobeusedtoprovidebothbulkelectricitystorageandback-upgenerationandtheseapplicationsarealreadywellontheirwaytocommercialisation.AtitspilotplantinSloughpicturedpage11HighviewPowerStoragehassuccessfullydemonstratedtwomodelstheLiquidAirEnergyStorageLAESsysteminwhichairisliqueedstoredandusedtogenerateelectricityonasinglesiteandtheCryogensetageneration-onlydevicesuppliedwithliquidairornitrogenbyroadtankerfromanindustrialgasproductionfacility.Whileeachwouldperformadifferentrolebothcanexploitwasteheatandprovidecoolingandcouldthereforeintegratewithawiderangeofgridindustrialandcommercialequipmenttoincreasetheirenergyreturn.LAEScouldalsoexploitwastecoldfromLNGre-gasicationforexampleduringliquefaction.Energystorageandback-upgenerationareexpectedtobecomeincreasinglyimportantasBritaininstallsevermoreintermittentrenewablegenerationcapacityoverthecomingdecades.TheDearmanEngineCompanyisdevelopingasmallerscalegeneratorbasedonitsliquidairpistonengine.LiquidAirEnergyStorageLAESLAESisanovellarge-scalelongdurationenergystoragesystembasedonstandardcomponentsfromtheindustrialgasesandpowergenerationindustries.Electricityisusedtodriveanairliquefactionplanttoproduceliquidairwhichisthenstoredinaninsulatedtank.Whenpowerisrequiredtheliquidispumpedtohighpressureandthenthroughaheatexchangerwhereitconvertsintoahighpressuregasthatdrivesaturbinetogenerateelectricity.Coldfromtheevaporationisrecycledtoreducetheenergyrequiredbytheliqueerandwasteheatfromtheliqueeroranexternalsourceincreasestheenergyrecoveredfromtheexpansionofliquidair.Atcommercialscale10-250MWLAESisexpectedtohavearoundtripefciencyof60.AfterextensivetestingatthepilotplantthesystemiscurrentlyatTRL7onascaleof1-10andsinceitisbasedonexistingcomponentsdevelopersHighviewPowerStorageexpectprogresstofullcommercialisationtoberelativelyrapid. 10LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALBalancingtheelectricitygridwillbecomeincreasinglychallengingastheproportionofintermittentrenewablegenerationcontinuestorise.Thisisnotsimplyaquestionofholdingpowerstationsinreserveforwhenthewinddropsbutalsobeingabletoabsorbexcesswindpowerwhenthereistoolittledemandoftenatnightaroleforwhichstorageisideallysuited.IfsuchwrongtimeenergyisstoredandusedtodisplacefossilgeneratorsatpeaktimesCO2emissionsarereducedandconstraintcompensationpaymentstowindfarmoperatorsavoided.HowevercurrentstoragetechnologiesincludingpumpedstorageCompressedAirEnergyStorageCAESandgridbatteriesallsuffersignicantdrawbacks.BycontrastLAEShasnogeographicalconstraintscontainsnotoxicorexoticmaterialsandisexpectedtobelonglasting30yearsandlowmaintenance.Sinceitisbuiltfromprovenlarge-scalecomponentsthatarealreadywidelyusedintheindustrialgasandpowergenerationindustriesLAESisoneofthefewtechnologiescapableofprovidingplantsof50-100MWand100sMWhinthenearterm.ItisalsomoreexiblethansomeotherformsofstoragesincepowerMWandenergyMWhcanbeconguredindependentlyaccordingtoneed.AtcommercialscaleLAESislikelytobehighlycompetitiveHighviewPowerStorageprojectscapitalcostsfordaily-cyclingplantswillrangefrom120kWhfora200MWplantto320kWhfora10MWplant.LAEScouldperformawiderangeofrolesintheenergysystemincludingnstorewrongtimeenergyfromintermittentrenewablegeneratorstodisplacefossilgenerationatpeaktimesandreduceCO2emissionsnhelprmtheoutputofwindfarmssoincreasingitsvaluetobothwindfarmoperatorsandthegridnprovideresponsereserveblackstartandancillaryservicestonetworkoperatorsnimprovenetworkassetmanagementbyallowingoperatorstodeferorreducethecostofupgradingtransmissionanddistributionlinesBalancingthegridwillrequireincreasingamountsofstoragetoabsorbwrongtimeenergy.Liquidairisoneofthefewtechnologiesabletoprovidelarge-scaleplantsintheshortterm.3.LIQUIDAIRTECHNOLOGIESLiquidAirEnergyStoragecycle.SourceHighviewPowerStorage.Stage1ChargeStage2StorageStage3PowerRecoveryStage4ColdRecyclingStage5Harnessingwasteheatoptional LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL11nprovidestrategicenergysecurityasinglegasometerstyletankofthesortusedintheLNGindustrycouldstoresufcientenergyasliquidairtomakegoodthelossof5GWofwindpowerforthreehours.LAESandwasteheatLiketheDearmanengineLAESisinherentlycapableofexploitinglowgradewasteheat 12LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALTHELIQUIDAIRECONOMY LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL13PEAKSECURITYOFSUPPLYELECTRICITYASAFUELFORHYBRIDVEHICLESALSOPROVIDEFREEAIRCONDITIONINGORREFRIGERATIONREFUELLINGSTATIONTRANSPORTEDONSITECRYOGENSETLAESLIQUIDAIRENERGYSTORAGEPLANTLIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALPOWERLIQUIDAIRWASTECOLDRECYCLEWASTEHEATRECYCLEPROVIDECOOLINGFORSUPERMARKETSDATACENTRESETCCOLDSTORAGETANKWINDENERGYOROTHERFORMSOFOFF-PEAKELECTRICITYFUELFORZEROEMISSIONSVEHICLESPOWERRECOVERYZEROEMISSIONREMOTEBACK-UPPOWERCOOLINGFACTORIESINDUSTRIESLIQUIDAIRSTORAGETANKLIQUIDAIRSTORAGETANKCO-LOCATEDGENERATIONORINDUSTRIALPROCESSESLNGTERMINALPOWERRECOVERYLIQUIDAIRSTORAGETANKLIQUEFACTIONLiquidairtechnologiescouldintegratewithawiderangeofequipmentacrosstheelectricitygastransportandindustrialsectorstoformaliquidaireconomy.Thisisnotremotelytosuggestliquidairisasilverbulletbutitcouldhelptotacklesomeorourtoughestenergychallengesanddelivermajorsavingsinenergycarbonandcost.Inaliquidaireconomymanydifferentenergyservicescouldbeprovidedfromasingletankofcold.IfaLiquidAirEnergyStorageplantwerebuiltinabusinessparkforexampleitcouldliquefyairusinglowercarbonoff-peakelectricityandthenuseittogenerateelectricityefcientlyatpeaktimesincorporatingwasteheatfromanearbybiomasspowerstation.TheLAESplantcouldalsosupplyliquidairtoaneighbouringlogisticsbusinesstofuelforklifttrucksandrefrigeratedlorriesandbytankertolocationsfurtheraeldsuchassupermarketsandbusdepots.Theretheliquidaircouldbeusedbothforrefrigeratedandhybridvehiclescuttingdieselconsumptionbyasmuchasaquarterandforemergencyback-uppowerorgridbalancing.LiquidAirEnergyStorageplantscouldbeco-locatedwithindustrywheretheycouldturnwasteheatintoadditionalpowerorwithLNGterminalswherehugeamountsofwastecoldcouldmassivelyincreasetheefciencyofairliquefaction.WeestimatethewastecoldfromBritainsprojectedLNGimportsin2030couldproduceenoughliquidairtofuel111000heathybridbusesmorethan2.5timestheexistingeet.Liquidaircouldalsobeintegratedwithallsortsofgeneratingcapacitywindnuclearandgastohelpbalancethegridandcutcarbonemissions.Itcouldalsobeintegratedintoexistingindustrialgasproductionsiteswhichcollectivelyhavesubstantialsurplusnitrogencapacity.Ifusedforelectricitystorageandgenerationthissurpluswouldequatetoan800MWpowerstationoperating312hoursperdayandcouldbeusedtodisplacethehighest-carbongeneratorsatpeaktimeswithlowercarbonelectricity.Thepotentialoftheliquidaireconomyisonlybeginningtobecomeapparentanditseemslikelythatfurtheropportunitieswillemergeasourunderstandingimproves.TheLiquidAirEnergyNetworkhasbeenformedtoinvestigatethepossibilitiesandwillpublishitsndingsinaseriesofreportsoverthecomingyear.Formoreinformationpleasevisitwww.liquidair.org.uk. 14LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALNationalGridexpectsUKLNGimportstoriseto30billioncubicmetersin2030GoneGreenscenario.IfallthecoldfromthisLNGwereusedinairliquefactionitcouldhelpproduce8.1milliontonnesofliquidairperyear.Thiswouldconsumejust0.97TWhofelectricityratherthan3.23TWhthatwouldhavebeenrequiredwithouttheLNGcold.The8.1milliontonnesofliquidairproducedwouldthendeliver0.81TWhbacktothegridoverthecourseofayearor0.2oftotalUKelectricitydemandin2012.AlternativelythatmuchLNG-assistedliquidaircouldinprinciplefuel9.3billioncarkilometresequivalenttoalmost2ofthedistancedrivenbycarsinGreatBritainin2011or111000heathybridbusesmorethan2.5timestheexistingUKbuseet.5IntermsofenergysecurityanLNG-sizestoragetanklledwithliquidairwouldrepresentabout16.6GWhwhichcouldmakegoodthelossof5GWofgeneratingcapacityfor3hours.IsleofGrainLNGterminal.SourceNationalGrid.CryogensetTheCryogensetissimplyaLAESsystemwithouttheliqueer.Itconsistsofastoragetankheatexchangerturbineandgeneratorandwouldbesuppliedwithliquidairornitrogenbyroadtankerfromanindustrialgasproductionsite.Thisarrangementisdesignedforcircumstanceswherethegeneratorwouldbeusedtooinfrequentlytojustifythecostofaliqueersuchasprovidingemergencyback-uppowerforbusinessesanddistributedreservecapacityforthegrid.Itiszero-emissionsatthepointofuseandpotentiallylowcarbonandapotentialreplacementforadieselgenset.WhereastheLAESsystemisviableatscalesof10MW-250MWtheoptimumsizeforaCryogensetis5MW-10MW.Itcanalsobeintegratedwithsourcesofwasteheat.Manycompaniesmaintaindieselorgasredgeneratorstoprovideback-upforessentialservicesincaseofpowercutsincludingwatercompaniesfactorieshospitalstelecomsoperatorsanddatacentres.SomecompanieswithlargergeneratorsalsohelptobalancetheelectricitygridbytakingpartinSTORtheShortTermOperatingReservemarketasgeneratorsheldinreserveagainstasuddenlossofgeneratingcapacityorspikeindemand.ThispoweriscarbonintensivebecauseitisgeneratedfromfossilfuelsusingsmallinefcientgeneratorsandmodellingsuggestsCO2emissionsfromCryogensetswouldbealmost60loweronthebasisofprojectedovernightelectricityin2030.DieselgeneratorsalsoemithighlevelsofNOXandPMpollutionsomelocalauthoritiessuchastheCityofLondonhavebannedtheiruseforgridbalancingwhereasCryogensetsexhaustonlycleancoldairornitrogen.AnycompanyinstallingaCryogensetcouldincreasethesecurityofitselectricitysupplyreduceitsexposuretopeakpowerpricesthroughtheTriadsystemgeneraterevenueintheSTORmarketandreduceitsemissions.TheprospectsfordeploymentoftheCryogensetarelikelytodependonafuturelegislativeframeworkbutthemarketpotentialissettogrowrapidly.NationalGridexpectsitsreserverequirementtorisefrom3.5GWtodaytosome8-13GWby2020.IntheGoneGreenscenarioby2025morethanhalfoftheprojected8GWSTORcapacitywouldbeprovidedbynewprovidersratherthantheincumbentenergycompanies.LongertermtheCLCFreportfoundthemarketopportunityfortheCryogensetcouldbe30GWby2050.CryogensetandwasteheatLikeLAEStheCryogensetcanbeintegratedintoprocessesthatgeneratewasteheatsuchasbiomasspowerstationsorlandllgasgenerators.WasteheatfromthegeneratorwouldbeusedtoraisespecicoutputoftheCryogensetwhilealsoincreasingtheeffectiveefciencyofthegeneratorcyclebyconvertingthewasteheattoelectricalenergy.Itwouldalsoallowtheownertoearnadditionalrevenuebyprovidingarangeofstorageservicestothegrid.Highviewplanstohavea5MW15MWhCryogensetintegratingwasteheatoperationalin2015.LiquidAirEnergyStorageplantscanconvertwasteheatandwastecoldintoadditionalpowerathighlevelsofefciency.3.LIQUIDAIRTECHNOLOGIES58.1milliontonnesofliquidair365200kgperbusperday110958buses LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL15SmallscalecryogenicgeneratorsBecausetheCryogensetisbasedonturbinetechnologyitsminimumpracticablepowerratingisabout1.5MW.BelowthatsizeacryogenicpistonenginesuchastheDearmanenginecouldactasasmallerscaleelectricitygeneratortoprovidethesamekindofservicesemergencyback-upandgridbalancing.TheDearmanEngineCompanyDECestimatestheunitswouldcostaboutthesameasanequivalent-sizeddieselgensetbutwouldbezeroemissionsatthepointofuseandlowercarbononthebasisoftheprojectedcarbonintensityofgridelectricity.WhiletheunitswouldbesmallerthanaCryogensettheycouldbeoperatedintandemtoprovidealargeamountofdistributedgridbalancing.DEChasrecentlywonTSBfundingforafeasibilitystudytomodelthetechnicalandeconomicpotentialofthisapplicationandthecompanyexpectstobuildademonstratorenginein2015.3.LIQUIDAIRTECHNOLOGIES 16LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALTypicallytheyoperateliqueersonlyatnightwhenelectricityischeaperandavoidpeaktimessohelpingtobalanceoverallsupplyanddemand.Itwouldnotbeahugeleapforoperatorstoinstallgeneratingequipmentandusetheirexcessnitrogentoexportpowertothegridatpeaktimes.IneffectAirSeparationUnitswouldbecomeLAESplantsliquefyingatnightgeneratingatpeaktimeswhilecontinuingtosupplytheirtraditionalcustomerswithcryogenicgases.TheindustrialgasindustryinBritainhassignicantspareproductioncapacityinbothliquidandgaseousnitrogenandeithercouldbeusedinplaceofliquidairtosupportearlydeployment.AccordingtotheCLCFreportsparegaseousnitrogenproductioncapacitycouldamounttoasmuchas8500tonnesperdayalthoughmakinguseofitonthegridwouldrequireinvestmentinadditionalliqueersandgeneratingequipment.OnthisbasistheindustrialgasindustrycollectivelycouldAswehaveshownliquidairtechnologiescouldintegratewithawiderangeofequipmentacrosstheelectricitygastransportandindustrialsectorstodelivermajorsavingsinenergycarbonandcost.Thisisnotremotelytosuggestliquidairisasilverbulletbutitcouldhelptotacklethreeofthetoughestchallengesofthelow-carbontransitionbalancinganelectricitygridincreasinglydominatedbyintermittentrenewablesseeBox3page19providingafast-refuellingandlow-carbontransportfuelandharvestinglowgradewasteheat.Sincetheserolescanbeintegratedwitheachotherandwithmanyexistingtechnologieswemightsoonbegintotalkofaliquidaireconomy.4.THELIQUIDAIRECONOMYItwouldbeanitrogenratherthanliquidaireconomyatrstsimplybecausetheindustrialgascompanieshavesubstantialsparenitrogenproductioncapacityandanationwidetankerdistributionnetworkamajoradvantageoversomeotherpotentiallowcarbonenergyvectorssuchashydrogen.Liquidairandnitrogenhavesimilarthermo-physicalpropertiesandinBritaintheexistingsparecapacitywouldbeampletosupporttheearlydeploymentofliquidairtechnologiesseeIntroduction.SoapromisingplacetostarttointegrateliquidairtechnologieswouldbetheelevenindustrialgasproductionsitesacrossGreatBritain.IndustrialgasproducersTheindustrialgasproducersarealreadycloselyinvolvedinthemanagementoftheelectricitygrid.Airseparationisanenergyintensivebusinessthatconsumesabout3oftheUKelectricitysupplyandproducersareacutelyattunedtowholesalepowerprices.Theindustrialgasesindustryhasdevelopedoverthepastcenturyandmostofthecountryiswithineasydeliverydistanceofoneofitsproductionsites.MapofUKindustrialgasproductionsites.Eachsiteismarkedwitha50and100mileradiustoindicatethepotentialdeliverycatchmentarea.SourceLiquidAirEnergyNetwork. LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL17Aliquidaireconomycouldhelpsolvesomeofourtoughestenergychallenges.4.THELIQUIDAIRECONOMYgenerate800MWtheequivalentofadecentsizedpowerstationforabout312hoursperday.Thiscouldbeusedtosupplylowercarbonenergyatpeaktimeswhenemissionsareusuallyhighest.Atleastsomeoftheindustrialgasproductionsitesarelikelytobeinareasofgridcongestionwhereadditionalstoragecapacitywouldbevaluable.ThoseinMotherwellTeessideandHullmighthelpmanageowsbetweenScotlandandEnglandincreasinglyimportantaswindcapacitygrowsnorthoftheborder.SpareliquidnitrogenproductioncapacityisavailableimmediatelywithoutfurtherinvestmentanditspotentialintransportwillbeassessedinourforthcomingreportLiquidAirontheHighway.FleetoperatorsandmanufacturingMuchoftheindustrialgassuppliersbusinessinvolvesdistributingcryogenicgasesbyroadtankersthatreloadwithbothproductanddieselatasinglesite.ThispresentsanobviousopportunitytointroducetheDearmanengineheathybridconceptwithnoneedforanypublicrefuellinginfrastructure.IfindustrialgastankerswerettedwithICE-DEhybridstheycouldalsorefuelwithliquidnitrogenatbasesavingupto25ontheeetsdieselbill.Inanyeventtheindustrialgasproductionsitesarewellspacedaroundthecountryandcoulddeliverliquidnitrogeneconomicallytothemostlikelycentresofnewtransportdemandseemap.HauliersandsupermarketchainscouldbeearlyadoptersofDearmanengineheathybridandrefrigerationconceptsbecauseofthepotentialfuelandcarbonsavings.WithaliquidnitrogentankinstalledatalogisticshuborsupermarketdistributioncentreitmightalsomakesensetoinstallaCryogensetforemergencypowerandtoreducethecompanysexposuretopeakelectricitypricesandgeneraterevenueinthecapacitymarkets.Inindustriesthatalreadyconsumelargeamountsofliquidnitrogensuchasfoodprocessingexpandingtheexistingon-sitestoragecapacitywouldallowthecompanytoincreasethenumberoffunctionsitperformswithliquidnitrogenincludingback-uppowerwasteheatrecoveryon-sitevehiclessuchasforklifttrucksandoff-sitetransportrefrigeration.Overathousandcompaniesstorelargeamounts15tonnesofnitrogenasaliquidbutuseitasagaswhocouldinstallacryogenicenginetogenerateelectricityduringvaporisation.Evenindustriesthatdonotcurrentlymakeuseofliquidnitrogencouldndacompellingcasetointegrateemergencypowerheatrecoveryrefrigerationandtransportaroundasingletankofcold.LNGterminalsBritainsthreeLNGimportterminalsofferlargescaleintegrationopportunities.AllthreeterminalsoneatIsleofGraininKentandtwoatMilfordHaveninSouthWalescouldprovideprodigiousamountsofcoldtoincreasetheefciencyofairliquefactionataco-locatedLAESplant.IfallthecoldfromprojectedUKLNGimportsin2030wereusedinthiswayitwouldproduce8.1milliontonnesofliquidair.Thiscouldthenbeusedtodeliver0.81TWhbacktothegridatpeaktimeswhichequatesto0.2oftotalUKelectricitydemandin2012.Alternativelythatmuchliquidaircouldinprinciplefuel9.3billioncarkilometresequivalenttoalmost2ofthedistancedrivenbycarsinGreatBritainin2011or111000heathybridbusesmorethan2.5timestheexistingUKbuseet.6IfanLNG-LAESplantwereusedtobolsterenergysecurityasingleLNG-sizestoragetanklledwithliquidaircouldmakegoodthelossof5GWofgeneratingcapacityfor3hours.ThiscouldbeincreasinglyvaluabletowardsthemiddleofthisdecadewhenOfgempredictstheriskofpowercutswillrisesharply.IfthewastecoldatLNGterminalswereusedtoproduceliquidairfortransportfuelIsleofGraininparticularwouldhelplloneofthefewgapsintheindustrialgasdistributionnetworktheeastsideofLondonandcouldeasilysupplythecapitalsbusdepots.BusoperatorshaveastrongincentivetoadopttheDearmanengineheathybridbecauseitwouldcutfuelcostsandcarbonemissionsbydisplacingdieselwithliquidnitrogenenablestop-starttechnologydeliveringfurthersavingsincostandcarbonandprovidefreeairconditioning.Aheathybridbuswouldconsumearound200kgofliquidnitrogenperdaymeaningthecapitalslargestbusdepot196busescouldbesuppliedby2tankerdeliveriesandtheaveragedepot100busesbyonedelivery.Thecapitalsentireeetofaround7600buseswouldneedlessthan555000tonnesperyear7lessthanasixthof68.1milliontonnesofliquidair365200kgperbusperday110958buses77600busesx200kgperdayx365554800tonnesofliquidairperyear 18LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALInaliquidaireconomyawiderangeofenergyneedscouldbeservicedfromasingletankofcold.4.THELIQUIDAIRECONOMYGrainspotentialliquidairproductioncapacity.AgainabusdepotwithsufcientspacecouldalsoinstallaCryogensettogeneraterevenuebyprovidingreservecapacitytothelocalgrid.NewliqueersatankofcoldMuchoftheintegrationdiscussedsofarcouldbeachievedbyexploitingtheexistingnitrogenglut.Oncethatisexhaustedtoexpandfurtherwewouldneedtobuildnewliquidairproductionplantsandthatwouldcreatetheopportunitytocreateafullyjoinedupsystem.Insteadofintegratingliquidairtechnologiessomewhatpiecemealwecouldstarttoplanavarietyofenergyservicesaroundastrategicallyplacedtankofcoldinlocationsasdiverseasindustrialparksbusdepotsandtowncentres.Aswindcapacitycontinuestoriseliquidairwouldallowlowercarbonovernightelectricitytobedeployedinpeakpowergenerationtransportrefrigerationandcoolingallfromasingleplant.Sowhatmightaliquidaireconomylooklikein2030AnewliqueerorLAESplantsitedatanindustrialparkforexamplemightsupplyarangeofneighbouringbusinessesfordifferentpurposes.AdatacentremightneedliquidairforcoolingandforitsbackupCryogensetwhilealogisticscompanymightwantfuelforitsZEVforklifttrucksandheathybridlorries.AbiomasspowerstationorgasredCHPplantcouldbeintegrateddirectlywiththeLAESunitoriftoodistantcouldinstallaCryogensetandtanktoberelledperiodicallybydeliveriesfromthecentralliqueer.Withsufcientregionaldemandforliquidairtheliqueercouldbesizedtosupportatankerdistributionnetwork.AsupermarketdistributionhubontheotherhandmightinstallalargeliquidairtanktoberegularlyrelledfromthenearestliqueerwhichcouldsupportitsDearmanenginetruckrefrigerationunitsforklifttrucksandaCryogensetforemergencypower.AmetropolitanbusdepotcouldadoptasimilarapproachwithalargetanktosupportbothitsheathybridbuseetandaCryogensetforgridbalancing.Inthelongertermitmightalsosupportrefuellingforprivatevehicles.Furtheraeldamineoperationcouldgainparticularbenetsfromorganisingitsoperationsaroundatankofcold.IfundergroundvehiclesweredesignedtorunonDearmanenginesasZEVstheirexhaustofcoldairwouldprovidemuchneededcoolingandreducetheloadonventilationsystems.Abovegroundheavydutyoff-highwayvehiclessuchasdumpertruckscouldbedesignedasheathybridstosavelargeamountsofdiesel.Theliquidaircouldalsoprovideback-upagainstpowercuts-particularlyvaluableincountrieswheretheelectricitygridisunreliablesuchasSouthAfricaandcoolingforminebuildings.Sincemineswouldneedlargevolumesofliquidairandareoftenremoteitislikelytheywouldinstalltheirownliqueertooperateoff-peak.Thepotentialofthenitrogenorliquidaireconomyisonlybeginningtobecomeapparentanditseemslikelythatfurtheropportunitieswillemergeasourunderstandingimproves.TheLiquidAirEnergyNetworkhasbeenformedtoinvestigatethepossibilitiesandwillpublishitsndingsinaseriesofreportsoverthecomingyear.ThesewillincludeLiquidAirontheHighwayLiquidAirMappingtheUKOpportunityandCleantechLeapfrogatankofcold.Formoreinformationpleasevisitwww.liquidair.org.uk LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL19Liquidaircouldintegratewithawiderangeofgeneratingplanttohelpbalancethegridwhichwillbecomeincreasinglychallengingastheproportionofintermittentrenewablecapacitycontinuestorise.ThesamecouldbealsosaidforotherformsofbulkelectricitystoragesuchaspumpedhydroorcompressedairCAESbutliquidairhasseveraldistinctadvantages.Forexamplewindfarmscouldintegrateenergystoragetoabsorbexcesspowerwhendemandislowandexportitatpeaktimes.Thiswouldrmthewindoutputmakingitmorevaluabletoboththewindfarmoperatorandthegridreducethelikelihoodofwastefulconstraintpaymentsandcutcarbonemissions.InprinciplethesebenetscouldbeprovidedbyanyformofbulkstoragebutpumpedhydroandCAESaregeographicallyandgeologicallyconstrainedwhereasliquidairplantsarenot.Forexamplethepowerfromthe300MWThanetWindFarmofftheKentcoastjoinsthegridattheRichboroughelectricitysubstationwherethereareplanstobuilda40MWdieselpeakingplantforwhenthewinddrops.ThisrolecouldbeservedbyaLAESplantorCryogensetwithoutresortingtofossilfuelsbutintheatKentcountrysidepumpedstoragewouldbeimpossible.Nuclearandotherthermalpowerstationscouldalsobenetbyintegratingstoragetoshapetheiroutputinresponsetouctuatingdemandallowingthemtorunmoreefciently.Energystoragecouldbechargedduringoff-peakhoursandusedtogenerateadditionalpoweratpeaktimes.Theadvantageofliquidairisthatunlikeotherstoragetechnologiesitcanmakeuseofthepowerstationswasteheattoproduceadditionalpowerathighlevelsofefciency.AfullyintegrateddesignproposedbyProfessorYulongDingoftheUniversityofBirminghamwouldraisethepeakoutputofthenuclearplanttothreetimesitsratedcapacity.OneconventionalwayofsatisfyingpeakelectricitydemandisthroughOpenCycleGasTurbineOCGTplantsordieselgeneratorswhichareinefcientandalmostascarbonintensiveascoal.HoweveranothernovelliquidairdesignfromProfessorDingwouldeliminatetheemissionsofsuchplantsthroughcarboncapturewhilegeneratingpeakpoweralmostascheaplyasbaseloadformoredetailseetheCLCFreportcitedonpage25.Thismightgosomewaytowardsreconcilingthegovernmentsrenewedinterestingaswithitslegallybindingemissionsreductiontargets.Nootherstoragetechnologyiscapableofthis.BOX3IntegratingliquidairintopowergenerationScotlandcouldbeanearlyadopterofliquidairtechnologies.TheScottishgovernmenthassetatargetofgeneratingtheequivalentofitstotalelectricityconsumptionfromrenewablesandexportingasmuchelectricityagainby2020andhasrecognisedtheimportanceofgridstorage.ItintendstopublishacomprehensiveenergystrategywithinthenexttwoyearsbasednotonlyontheprinciplesofdecarbonisationsecurityofsupplyandlowestpossiblecostbutalsoofeconomicopportunitytoScottishindustry.ScotlandsambitiousrenewablegenerationtargetsuggestsapotentiallylargeroleforLiquidAirEnergyStorage.AstudybyWilliamHoltofStrathclydeUniversityfoundthetargetimpliedaneedformorethan3GWofstorageby2020equivalentto32x100MWLAESplants.AroundtableheldbyLAENinGlasgowinJune2013foundthatif60ofthevalueofthatplantweresourcedintheUKthevaluetothedomesticeconomycouldbesome2billion.MuchofthatvaluecouldaccruetoScotlandsincebuildingLAESplantswouldplaytoitsstrengthintheoilandgassectorandmechanicalengineeringmoregenerally.Formoreinformationpleaseseewww.liquidair.org.uk.BOX4ScotlandLiquidaircouldbeintegratedwithallsortsofgeneratingcapacitywindgasnucleartoincreaseefciencyandcutcarbon.4.THELIQUIDAIRECONOMY 20LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIALFromthisbriefreviewitisclearthatntheliquidaircyclehasawiderangeofpotentialapplicationsintransportandpowerwhichsupportBritainsstrategicenergyandenvironmentalobjectivesntheabilityofliquidairtorecoverenergyfromwasteheatandcoldathighlevelsofefciencymeanstherearemanyopportunitiestointegratewithexistingtechnologiesandevendevelopaliquidaireconomynsincetheyrelylargelyonexistingcomponentsandsupplychainsliquidairtechnologiescouldbequickertomarketthanothernoveltechnologiesatanominallysimilarlevelofdevelopmentnexcessnitrogenproductionanddistributioncapacitycouldsupportextensivedeploymentofliquidairtechnologiesbeforeanynewcapacityneedbebuiltthereisnochickenandeggdilemma.Whileliquidairhasmanyadvantageshoweveritsearlyandwidespreaddeploymentisfarfromguaranteed.Likeallnoveltechnologiesitmustcrossthevalleyofdeathbetweendemonstrationandcommercialisation-wheremostfail.Ontheothersideofthevalleyliesthepossibilityofajoined-upliquidaireconomywhereliquidairiswidelydeployedtodelivermajorreductionsinfuelconsumptioncostcarbonemissionsandlocalairpollutionaswellaseconomicgrowthandnewjobs.Tomaximiseliquidairschancesofsuccessstillrequiresresearchanddevelopmentandthiseffortneedstobeco-ordinatedtoensureresearchersfocusontheprincipalchallengesandavoidduplication.Thisinturnrequiresthedevelopmentoffull-scaletechnologyandproductroadmapswhichunliketheindicativetimelinepresentedonpage22shouldbedevelopedwithinputfromallrelevantstakeholders.TheLiquidAirEnergyNetworkwasfoundedtocatalysethisworkandwerecommendliquidairstakeholdersshouldcollaboratetondevelopandmaintaintechnologyandproductroadmapsforbothgridandtransportapplications.TheseroadmapsshouldbeproducedbyconsensusalignedwithbroadergovernmentandindustryroadmapsandaimedtomaximisetheeconomicandenvironmentalopportunityforUKplcnexploretheglobalopportunitiesforliquidairacrossindustryandtransportinbothdevelopedanddevelopingeconomiesandquantifythemarketpotentialnmappotentialsourcesofliquidnitrogensupplyanddemandtodeterminewherebesttocarryouteldtrialsandearlydeploymentndevelopmodelstoexplorethepotentialbenetsofintegratinggridandtransportapplicationsthroughmulti-purposeliquidairplantsnworkwithgovernmenttoensureliquidairisrecognisedevenbetterinthepolicyandfundingframeworknstarttoinformthepublicoverthebenetsandsafetyofliquidairtechnologies.ToachievethisLAENhasestablishedthreeworkinggroupscoveringgridenergystoragetransportandintegratedmodellingwithmembersdrawnfromindustryuniversitiestechnologydevelopersandindependentconsultants.Thegridandtransportgroupswilleachdevelopandmaintainamutuallyagreedtechnologyroadmapandcommonresearchagendatonguidefundamentalresearchatuniversitiesandindustrialresearch5.CONCLUSIONSRECOMMENDATIONS LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL21nsetspecicshorttermobjectivestodrivetechnologyandmanufacturingdevelopmenttowardstheproductroadmapnintegrateliquidairwithwidergridandtransportroadmapsandresearchagendasdevelopedbygovernmentindustryandotherkeygroupsnidentifyareasofexistingUKcapabilityandweaknessandpotentialareasforfuturedevelopmentandUKbenetnmakestrategicrecommendationstoUKfundingbodiessuchastheEPSRCandTSBtomaximisethebenettoUKplc.TheLiquidAirTransportTechnologyGrouphasalreadystartedworkandtherstiterationofthetransportroadmapwillbepublishedaspartofournextreportLiquidAirontheHighwaywhichisjointlyfundedbytheTSB.Thepurposeistoidentifytheresearchneedsofliquidairtransportapplicationsacrosspassengercommercialandoff-roadvehicleskeyareasofUKtechnicalcapabilityorweaknessanddevelopmentpathsthatmaximisethebenettoUKplc.TheroadmapwillsetspecicshorttermobjectivesandpayparticularattentiontoareasprioritisedbyAutomotiveCouncilsindustry-wideroadmap.MorebroadlytheHighwayreportwillmappotentialsourcesofliquidnitrogensupplyanddemandtodeterminewherebesttocarryouteldtrialsandearlydeployment.ThegridandintegratedmodellinggroupswillbeginworkshortlyandtheirconclusionswillbereectedinLAENreportsoverthecomingyearincludingLiquidAirMappingtheUKOpportunityandCleantechLeapfrogatankofcold.FormoreinformationontheLAENresearchprogrammeandreportlauncheventspleasevisitwww.liquidair.org.uk.5.CONCLUSIONSRECOMMENDATIONS 22LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL2010201120122013201420152016201720182019202020212022202320242026202920302050LIQUIDAIRENERGYSTORAGELAESTRL75MW15MWhCryogensetoperationalTRL9Storageworth10bntoUKgridCryogensetLAEScommercialdeploymentMarketopportunityof14GWforLAESHighviewcommercialproduct10MWLiquidaironUKgridworth1bnyear20kjobsHighviewGWdeploymentUKhas30GWwindneeds8.5-13GWgridbalancingcapacity2GWgridstoragetarget500MWLAESpossibleGlobalgridstoragemarketworth30bnDearmanenginegeneratorfeasibilitystudyTSBfundedUKhas55GWwindmorestorageneededDearmanenginegeneratordemonstratorOvernightelectricityemits50gCO2kWhandcosts2.7pDearmanenginegeneratorcommercialeldtrialsenablingcheaplowcarbonliquidairDearmanenginegeneratorcommercialisedLNGcoldimports29bcmcouldproduce8mtliquidairBirminghamCentreforCryogenicEnergyStoragelaunchedLNGcoldimports12bcmcouldproduce3.3mtliquidairLNGcoldimports20bcmcouldproduce5.6mtliquidairLIQUIDAIRTRANSPORTRefrigerationAsdaEcoFridgetriallaunchesDErefrigerationTRL4DErefrigerationsingleeldtrialTSBIDP8TRL5DErefrigeratedlorrycutsCO290vsdieselDErefrigerationeeteldtrialsChinafrozenfoodmktup30since2012Globalrefrigeratedvehiclemktworth6.8bnHeathybridwasteheatrecoveryDEheathybridTRL3DEheathybridTRL4DEheathybridbuscutsCO223vsdiesel42withair-conCitybusheathybridwouldcutCO2vsdieselfrom2015DEheathybridTRL6...FurtherDERDDEheathybridvolumeproduction...RicardosplitcycleenginedevelopmentTSBIDP8RicardosplitcycleenginevolumeproductionPOLICYCONTEXTLAIRgrantspendingreachessignicantmillionsUKemissions-34bylawUKemissions-60indicativetarget4thCarbonBudgetUKcarbonpriceoor30tCO2UKcarbonpricetarget70tCO2EUvehicleemissionstarget95gCO2kmforcarsUKemissions-80bylaw147gCO2kmforvans.Liquidairtechnologytimeline.SourcesHighviewPowerStorageDearmanEngineCompanyE4techImperialCollegeEnergyStorageNetworkNationalGridDECCClimateChangeCommitteeEuropeanCommissionPikeResearchCentreforLowCarbonFuturesLiquidAirEnergyNetwork.TECHNOLOGYTIMELINE LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL231nBasicPrincipleshavebeenobservedandreported.nScienticresearchundertaken.nScienticresearchisbeginningtobetranslatedintoappliedresearchanddevelopment.nPaperstudiesandscienticexperimentshavetakenplacenPerformancehasbeenpredicted.6nAmodelorprototypeofthetechnologysystemorsubsystemhasbeendemonstratedaspartofavehiclethatcansimulateandvalidateallsystemspecicationswithinatesthousetesttrackorsimilaroperationalenvironment.nPerformanceresultsvalidatethetechnologysviabilityforaspecicvehicleclass.2nSpeculativeapplicationshavebeenidentied.nExplorationintokeyprinciplesisongoing.nApplicationspecicsimulationsorexperimentshavebeenundertaken.nPerformancepredictionshavebeenrened.nPerformancehasbeenpredicted.7nMultipleprototypeshavebeendemonstratedinanoperationalon-vehicleenvironment.nThetechnologyperformsasrequired.nLimittestingandultimateperformancecharacteristicsarenowdetermined.nThetechnologyissuitabletobeincorporatedintospecicvehicleplatformdevelopmentprogrammes.3nAnalyticalandexperimentalassessmentshaveidentiedcriticalfunctionalityandorcharacteristics.nAnalyticalandlaboratorystudieshavephysicallyvalidatedpredictionsofseparateelementsofthetechnologyorcomponentsthatarenotyetintegratedorrepresentative.nPerformanceinvestigationusinganalyticalexperimentationandorsimulationsisunderway.8nTestanddemonstrationphaseshavebeencompletedtocustomerssatisfaction.nThetechnologyhasbeenproventoworkinitsnalformandunderexpectedconditions.nPerformancehasbeenvalidatedandconrmed.4nThetechnologycomponentandorbasicsubsystemhavebeenvalidatedinthelaboratoryortesthouseenvironment.nThebasicconcepthasbeenobservedinotherindustrysectorse.g.SpaceAerospace.nRequirementsandinteractionswithrelevantvehiclesystemshavebeendetermined.9nTheactualtechnologysystemhasbeenqualiedthroughoperationalexperience.nThetechnologyhasbeenappliedinitsnalformandunderreal-worldconditions.nReal-worldperformanceofthetechnologyisasuccess.nThevehicleorproducthasbeenlaunchedintothemarketplace.nScaledupdowntechnologyisindevelopmentforotherclassesofvehicle.5nThetechnologycomponentandorbasicsubsystemhavebeenvalidatedinrelevantenvironmentpotentiallythroughamuleoradaptedcurrentproductionvehicle.nBasictechnologicalcomponentsareintegratedwithreasonablyrealisticsupportingelementssothatthetechnologycanbetestedwithequipmentthatcansimulateandvalidateallsystemspecicationswithinalaboratorytesthouseortesttracksettingwithintegratedcomponents.nDesignruleshavebeenestablished.nPerformanceresultsdemonstratetheviabilityofthetechnologyandcondencetoselectitfornewvehicleprogrammeconsideration.10nThetechnologyissuccessfullyinserviceinmultipleapplicationformsvehicleplatformsandgeographicregions.In-serviceandlife-timewarrantydataisavailableconrmingactualmarketlifetimeperformanceandreliability.AUTOMOTIVECOUNCILTECHNOLOGYREADINESSLEVELS 24LIQUIDAIRTECHNOLOGIESAGUIDETOTHEPOTENTIAL6.GLOSSARYAPUAuxiliaryPowerUnitASUAirSeparationUnitBCCESBirminghamCentreforCryogenicEnergyStorageCAESCompressedAirEnergyStorageCHPCombinedHeatandPowerCLCFCentreforLowCarbonFuturesCNGCompressedNaturalGasDEDearmanengineDECDearmanEngineCompanyDECCDepartmentofEnergyandClimateChangeEPSRCEngineeringandPhysicalSciencesResearchCouncilEVElectricvehicleFCVFuelcellvehicleHEFHeatexchangeuidICEInternalcombustionengineLAENLiquidAirEnergyNetworkLAESLiquidAirEnergyStorageLATTGLiquidAirTransportTechnologyGroupLNGLiqueedNaturalGasNOXNitrogenoxidesOCGTOpenCycleGasTurbineORCOrganicRankineCyclePMParticulatematterSTORShortTermOperatingReserveTRLTechnologyReadinessLevelTRUTransportRefrigerationUnitZEVZeroemissionsvehicle ABOUTTHECENTREFORLOWCARBONFUTURESTheCentreforLowCarbonFuturesisacollaborativemembershiporganisationthatfocusesonsustainabilityforcompetitiveadvantage.FormedbytheUniversityofBirminghamUniversityofHullUniversityofLeedsUniversityofShefeldandUniversityofYorkweworkacrosstheEUAsiaandLatinAmerica.TheCentrebringstogetherengineersnaturalscientistsandsocialscientiststodeliverhighimpactresearchonour201314themesofEnergySystemsGreenGrowthandSmartInfrastructure.CLCFisdevelopingaseriesofTechnologyInsightssponsoredbyandinconjunctionwithindustry.TheseinsightsaimtoreducesomeoftheuncertaintiessurroundingthevastarrayoftechnologyoptionsandcomplementtheevidencebasedresearchreportsproducedbyCLCFbyprovidingamorepracticalguidetothepotentialusesofemergingtechnologies.CLCFisgratefulforfundingandsupportfromANAPeruAccentureBeijingInstituteofTechnologyBirminghamCityCouncilBrazilianEmbassytoLondonBritishDeputyHighCommissionofIndiaBritishEmbassyofBeijingBritishEmbassyofBrasiliaBritishEmbassytoColombiaBritishEmbassytoPeruBritishEmbassytoTokyoCentreforSustainableDevelopmentStudiesColumbiaCEIDChinaBeijingEnvironmentalExchangeCBEExCommitteeonClimateChangeoftheUKCCCDepartmentofBusinessInnovationandSkillsUKDepartmentofEnergyandClimateChangeUKDECCEnergyIntensiveUsersGroupICLEI-LocalGovernmentsforSustainabilityTokyoIndianChamberofCommerceInter-AmericanDevelopmentBankIADBInternationalInstituteforSustainableDevelopmentIISDJadavpurUniversityIndiaLeedsCityCouncilMinistryofEnvironmentPeruMINAMNationalPhysicalLaboratoryOECDRegionalDevelopmentAgencyRoyalAcademyofEngineeringTradesUnionCongressTecnolgicodeMonterreyMexicoTransportResearchLaboratoryUniversityCollegeLondonWorldwideUniversitiesNetworkWUNUniversityofShefeldUniversityofHullUniversityofLeedsUniversityofYorkUniversityofBirmingham.CONTACTSJonPricedirectorCLCFjon.pricelowcarbonfutures.orgTobyPetersdirectorLAENtoby.petersliquidair.org.ukEnquiresforsponsoringfutureTechnologyInsightstoinfolowcarbonfutures.orgABOUTTHELIQUIDAIRENERGYNETWORKWorkingwiththeBirminghamCentreforCryogenicEnergyStorageBCCESandtheCentreforLowCarbonFuturesCLCFtheLiquidAirEnergyNetworkLAENwasfoundedtoexplorethepotentialofliquidairasanenergyvectorandtoensureBritainmaintainsitsleadinthispromisingnewtechnologyandsecuresthefullenergyenvironmentalandeconomicbenets.Itsresearchisconductedincollaborationwithtechnologydevelopersindustryuniversitiesandpartnerorganisations.Thisistherstreportinaseriesofpolicyandtechnologyguides.Formoreinformationpleasevisitwww.liquidair.org.uk.SOURCESTheinformationandestimatesinthisbriengnotehavebeendrawnfromanumberofsourcesincludingtheCentreforLowCarbonFuturesreportLiquidAirintheenergyandtransportsystemsMay2013addinISBNnumberconsultantsE4techRicardoUKandSpiritusConsultingliquidairtechnologydevelopersHighviewPowerStorageandtheDearmanEngineCompanyandtheLiquidAirEnergyNetworkLAEN.SomesourcessuchasthemodellingandforecastsbyE4techandRicardoareunpublished.WITHTHANKSLAENwouldliketothankemployeesofAirProductsE4techRicardoUKSpiritusConsultingBirminghamCentreforCryogenicEnergyStorageUniversityofBirminghamCentreforLowCarbonFuturesDearmanEngineCompanyHighviewPowerStorageforcontributingtoorreviewingthispaper.DISCLAIMERWhiletheinformationpresentedinthisreportisbelievedtoberobustandofferedingoodfaithweacceptnoliabilityforitsusebyotherparties.October2013 THECENTREFORLOWCARBONFUTURESPARTNERSHIPhttpwww.lowcarbonfutures.org